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Effects of Poles & Zeros on Frequency Response (2)

¢ Therefore the magnitude and phase at s = p are given by:

nry---ry

|H(S)|\—n — bom

product of the distances of zeros to p
=Dy .
product of the distances of poles to p

Ay
\4’2
2 22 Re =
A3 b,
LHS)s=p=(@D1+d2+---+dn) — (61 +6:+---+6)
= sum of zero angles to p — sum of pole angles to p
.10 p447
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Effects of Poles & Zeros on Frequency Response (1)

+ Consider a general system transfer function: Zeros atz,,z,,...., Z

/
_P(s) —b =) —22):--(s—2n)

H(s) = —Q(s) LT A)(s — Ag) -+ (s — dy) = Poles at A1, A2 ...

¢ The value of the transfer function at some complex frequency s =p is:

P=2aNp—22)) (p—2n)
(p=2)(p—=22)-(p—Ay)

= b -
(e )@eT™) - - - (dyei™)

H(S)l‘Ap = b()

Re —

L4.10 p447
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Effects of Poles & Zeros on Frequency Response (3)

¢ Frequency Response of a system is obtained by evaluating H(s) along
the y-axis (i.e. taking all value of s=jw).

+ Consider the effect of two complex system poles on the frequency
response. 1

H(s) =
(s) - (@r iG] Near to a poI(_e
ENHANCES amplitude
t t
[H(jw)| LH(jw)
. K
o |H(iw) = —— )
T LH(jw)=—(6,+6,)
f e —
0, 0 w, © =
-
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Effects of Poles & Zeros on Frequency Response (4) Poles & Low-pass Filters

+ Consider the effect of two complex system zeros on the frequency + Use the enhancement and suppression properties of poles & zeros to design filters.
response. ¢ Low-pass filter (LPF) has maximum gain at w=0, and the gain decreases with w.
H(s) = (s-(a+ jw))(s-(a- jw)) Near to a zero + Simplest LPF has a single pole on real axis, say at (s=-w.). Then

t SUPPRESSES amplitude H(s) = —% and  |H(jo) =2
Im S+, d
kB Jorg ? . 1 ¢ To have a “brickwall” type of LPF (i.e. very sharp cut-off), we need a WALL OF
[H(jw)| |H(jo)| = rr LH(jw) = (¢4 +,) POLE as shown, the more poles we get, the sharper the cut-off.
TN jow ]
H J®c 1 Ideal (N = =)
N=1
t
Re — d jo |H( jw)|
- 0 k4
.;,»",.r ~w, 0 Re— 0 Re—
Lo 0N
L% 0 w, w =
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Poles & Band-pass Filter Notch Filter
¢ Band-pass filter has gain enhanced over the entire passband, but suppressed + Notch filter could in theory be realised with two zeros placed at +jw,. However,
elsewhere. such a filter would not have unity gain at zero frequency, and the notch will not be
+ For a passband centred around w,, we need lots of poles opposite the imaginary sharp.
axis in front of the passband centre at wy. ¢ To obtain a good notch filter, put two poles close the two zeros on the semicircle as
1 shown. Since the both pole/zero pair are equal-distance to the origin, the gain at
T ' zero frequency is exactly one. Same for m=zoo.
Sl | o) : J
* Jwy s plane |H(J‘U)|
= %9 oy
0 Re = ﬁ
0 Re —
" —Jjwy =3 “
X0 —jwy 0 W, S5
"

PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 7 PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 8



Notch Filter Example

+ Design a second-order notch filter to suppress 60 Hz hum in a radio receiver.
¢ Make w,=120n. Place zeros are at s = *jw,, and poles at - w, cosO * ju, Sino.
¢ We get:

H(s) - (5= jp)(s + joy)
(s+w,cosb + ja,sinO)(s + w, cos - jw,sinH)
]T ~ s’ +wy’ ~ s* +142122.3
™| splane s’ + (2w, c080)s + @} s> +(753.98c0s0)s +142122.3
%9 jay
(o
0 Re —
TR0 —jw,
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Butterworth Filters (1)

¢ Let us consider a normalised low-pass filter (i.e. one that has a cut-off frequency at
1) with an amplitude characteristic given by the equation:

1
(H(jw)l = ===
V1+w?n
¢ As n—x, this gives a ideal LPF response: gain=1 if w=<1, gain=0 if w>1.
1
[ H (o)l
) ideal (n = o)
0.707
0 1 [OR
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Practical Filter Specification

t t
|H(jw)| |H(jow)|

Low-pass Filter

Band-pass Filter

CL

0| @y Wy Wy Wo o
t t
[H(jw) High-pass Filter | jw)| Band-stop Filter
1 — 1
('P Gp C
Gt G = 1}
0 @y @ w- 0 Wy Wy Wy Wy w—)
PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 10
Butterworth Filters (2)
¢ Substitute s=jw in the equation ) 1
M)l = =5
V14 wn
1
¢ Wwe get: H(s)H(—s) = — T T \on
g (M) = 17y

& Therefore the poles of H(s)H(—s) are given by:
1+(s/ )™ =0 =" = -1x(j)*"

+ Now, we use the fact that —1 =7 and j= e 10 obtain

2n _ ej7r(2k—l+n)

s k integer

o Therefore the poles of H(s)H(—s) line in unity circle at:

Sk = ¢ (Zk4n—1) k=1,2,3,...,2n
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Butterworth Filters (3)

Butterworth Filters (4)

We are only interested in H(s), not H(-s). Therefore the poles of the low-pass filter
are those lying on the Left-Hand Plane (LHP) only, i.e.

sk = e%(?k%—n—l)

Il

cos—ﬂ—(2k+n—1)+jsin~7T—(2k+n—1) k=1,2,3,....n
2n 2n

The transfer function of this filter is:

1

- (s —s1)(s—s2)--- (s — 83)

H(s)

This is a class of filter known as Butterworth filters.

+ Butterworth filters are a family of filters with poles distributed evenly around the
Left-Hand Plane (LHP) unit circle, such that the poles are given by:

jT
S (2ken=D)
S, =6 where k=1,23,...,n (assume w, =1)

+ Here are the pole locations for Butterworth filters for orders n = 1 to 4.

n=1 n=2 n=3 n=4
. x" =
S0 ;owa
; : | X
R WA Y WA e
-1 =} . ~1% =1 x
~ X 4
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Frequency Scaling

* 6 o o

Consider a fourth-order Butterworth filter (i.e. n=4).
The poles are at angles 5x/8, 7x/8, 9n/8 amd 11x/8.
Therefore, the pole locations are: _ 3897 4 50.9239, —0.9239 + j0.3827.

Therefore: 1

Hig) = (52 1 0.76545 + 1)(s2 + 1.84785 + 1) __,d4_L_

1

= S 12613185 + 3.41425% + 2.6131s + 1

Coefficients of Butterworth Polynomial B,,(s) = s + ap_1s" ' + - +ays + 1

n

ay

az

as

as

as

ag

a7

ag ag

2

o w AW

So®

1.41421356
2.00000000
2.61312593
3.23606798
3.86370331
4.49395921
5.12583090
5.75877048
6.39245322

2.00000000
3.41421356
5.23606798
7.46410162
10.09783468
13.13707118
16.58171874
20.43172909

2.61312593
5.23606798
9.14162017
14.59179389
21.84615097
31.16343748
42.80206107

3.23606798
7.46410162
14.59179389
25.68835593
41.98638573
64.88239627

3.86370331

10.09783468
21.84615097
41.98638573
74.23342926

4.49395921

13.13707118
31.16343748
64.88239627

5.12583090
16.58171874
42.80206107

5.75877048
20.43172909 6.39245322
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+ So far we have consider only normalized Butterworth filters with 3dB bandwidth
w=1.
+ We can design filters for any other cut-off frequency by substituting s by s/ o,.
« For example, the transfer function for a second-order Butterworth filter for » =100
is given by:
1
s \2
(16)" + V2 (15) +1
B 1
524+ 100v2s + 104

H(s) =
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Relating this lecture to other courses

+ You will learn about poles and zeros in your 2" year control course. The
emphasis here is to provide you with intuitive understanding of their
effects on frequency response.

+ You have done Butterworth filters in your 2" year analogue circuits
course. Here you learn where the Butterworth filter equation comes from.

+ Some of you will be implementing the notch filter in your 3 year on real-
time digital signal processor (depending on options you take), and others
will learn more about filter design in your 3 and 4t year.
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