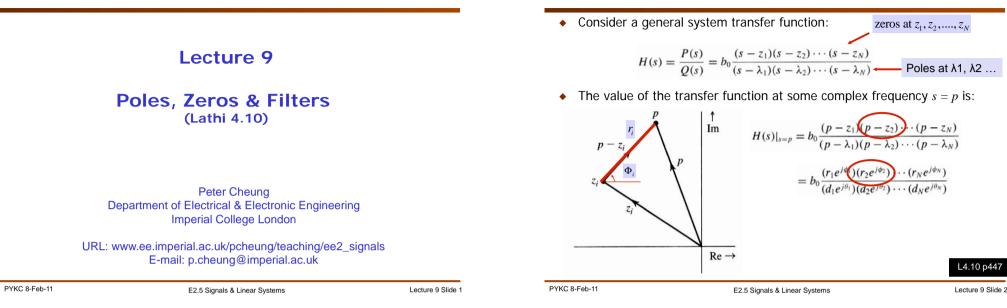
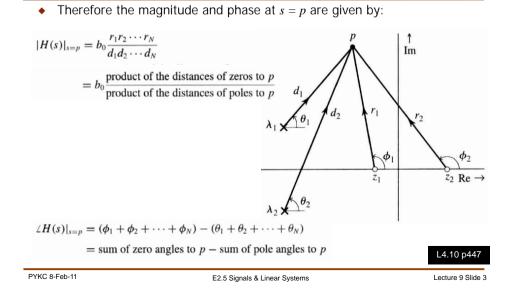
Effects of Poles & Zeros on Frequency Response (1)

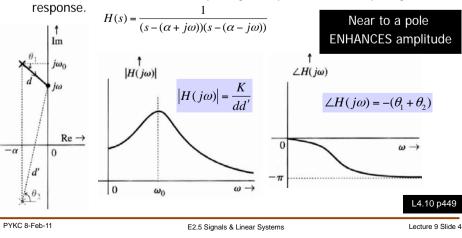


Effects of Poles & Zeros on Frequency Response (2)



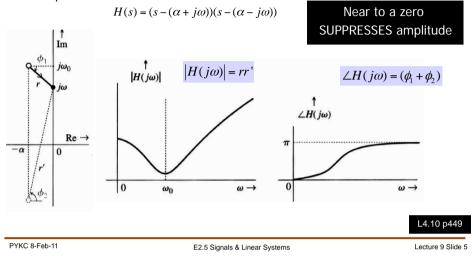
Effects of Poles & Zeros on Frequency Response (3)

- Frequency Response of a system is obtained by evaluating H(s) along the y-axis (i.e. taking all value of s=jω).
- Consider the effect of two complex system poles on the frequency



Effects of Poles & Zeros on Frequency Response (4)

Consider the effect of two complex system zeros on the frequency ٠ response.



Simplest LPF has a single pole on real axis, say at $(s=-\omega_c)$. Then ٠

٠

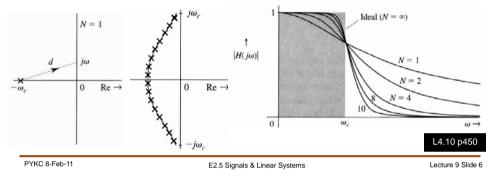
$$H(s) = \frac{\omega_c}{s + \omega_c}$$
 and $|H(j\omega)| = \frac{\omega_c}{d}$

Poles & Low-pass Filters

• Use the enhancement and suppression properties of poles & zeros to design filters.

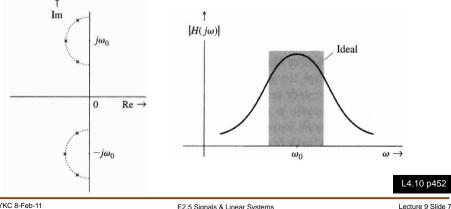
Low-pass filter (LPF) has maximum gain at $\omega = 0$, and the gain decreases with ω .

To have a "brickwall" type of LPF (i.e. very sharp cut-off), we need a WALL OF ٠ POLE as shown, the more poles we get, the sharper the cut-off.



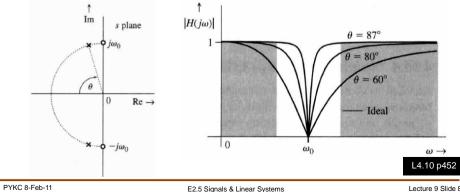
Poles & Band-pass Filter

- Band-pass filter has gain enhanced over the entire passband, but suppressed elsewhere.
- For a passband centred around ω_{0} , we need lots of poles opposite the imaginary axis in front of the passband centre at ω_0 .



Notch Filter

- Notch filter could in theory be realised with two zeros placed at $\pm i\omega_0$. However, ٠ such a filter would not have unity gain at zero frequency, and the notch will not be sharp.
- To obtain a good notch filter, put two poles close the two zeros on the semicircle as shown. Since the both pole/zero pair are equal-distance to the origin, the gain at zero frequency is exactly one. Same for $\omega = \pm \infty$.

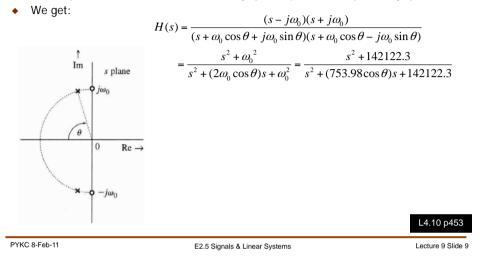


PYKC 8-Feb-11

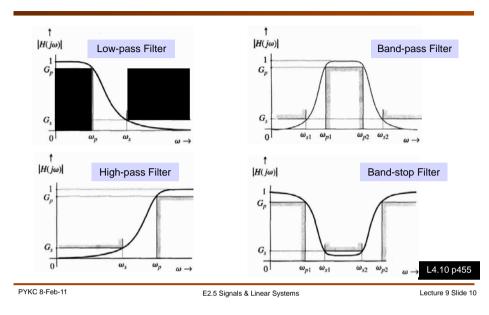
E2.5 Signals & Linear Systems

Notch Filter Example

- Design a second-order notch filter to suppress 60 Hz hum in a radio receiver.
- Make $\omega_0 = 120\pi$. Place zeros are at $s = \pm j\omega_0$, and poles at $-\omega_0 \cos\theta \pm j\omega_0 \sin\theta$.



Practical Filter Specification

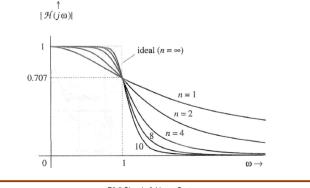


Butterworth Filters (1)

Let us consider a normalised low-pass filter (i.e. one that has a cut-off frequency at 1) with an amplitude characteristic given by the equation:

$$|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1+\omega^{2n}}}$$

• As $n \rightarrow \infty$, this gives a ideal LPF response: gain=1 if $\omega \le 1$, gain=0 if $\omega > 1$.



Butterworth Filters (2)

• Substitute s=j ω in the equation $|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1+\omega^{2n}}}$

$$\sqrt{1}$$

- we get: $\mathcal{H}(s)\mathcal{H}(-s) = \frac{1}{1+(s/j)^{2n}}$
- Therefore the poles of $\mathcal{H}(s)\mathcal{H}(-s)$ are given by:

$$1 + (s/j)^{2n} = 0 \implies s^{2n} = -1 \times (j)^{2n}$$

• Now, we use the fact that $-1 = e^{j\pi(2k-1)}$ and $j = e^{j\pi/2}$ to obtain

 $s^{2n} = e^{j\pi(2k-1+n)}$ k integer

• Therefore the poles of $\mathcal{H}(s)\mathcal{H}(-s)$ line in **unity circle** at:

$$s_k = e^{\frac{j\pi}{2n}(2k+n-1)}$$
 $k = 1, 2, 3, \dots, 2n$

PYKC 8-Feb-11

Butterworth Filters (3)

 We are only interested in H(s), not H(-s). Therefore the poles of the low-pass filter are those lying on the Left-Hand Plane (LHP) only, i.e.

$$s_k = e^{\frac{2\pi}{2n}(2k+n-1)}$$

= $\cos\frac{\pi}{2n}(2k+n-1) + j\sin\frac{\pi}{2n}(2k+n-1)$ $k = 1, 2, 3, ..., n$

• The transfer function of this filter is:

 $\frac{j\pi}{2k \perp n-1}$

$$\mathcal{H}(s) = \frac{1}{(s-s_1)(s-s_2)\cdots(s-s_n)}$$

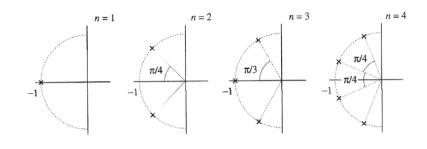
• This is a class of filter known as **Butterworth filters**.

Butterworth Filters (4)

• Butterworth filters are a family of filters with poles distributed evenly around the Left-Hand Plane (LHP) unit circle, such that the poles are given by:

$$s_k = e^{\frac{j\pi}{2n}(2k+n-1)}$$
 where $k = 1, 2, 3, ..., n$ (assume $\omega_c = 1$)

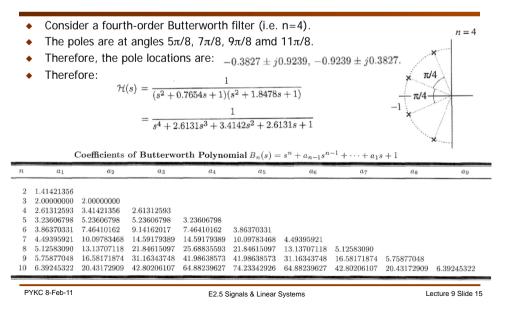
• Here are the pole locations for Butterworth filters for orders n = 1 to 4.



PYKC 8-Feb-11	E2.5 Signals & Linear Systems	Lecture 9 Slide 13	PYKC 8-Feb-11	E2.5 Signals & Linear Systems	Lecture 9 Slide 14

PYKC 8-Feb-11

Butterworth Filters (5)



Frequency Scaling

- + So far we have consider only normalized Butterworth filters with 3dB bandwidth $\omega_{c}{=}1.$
- We can design filters for any other cut-off frequency by substituting s by s/ ω_c .
- For example, the transfer function for a second-order Butterworth filter for ω_c =100 is given by:

$$H(s) = \frac{1}{\left(\frac{s}{100}\right)^2 + \sqrt{2}\left(\frac{s}{100}\right) + 1}$$
$$= \frac{1}{s^2 + 100\sqrt{2}s + 10^4}$$

Relating this lecture to other courses

- You will learn about poles and zeros in your 2nd year control course. The emphasis here is to provide you with intuitive understanding of their effects on frequency response.
- You have done Butterworth filters in your 2nd year analogue circuits course. Here you learn where the Butterworth filter equation comes from.
- Some of you will be implementing the notch filter in your 3rd year on realtime digital signal processor (depending on options you take), and others will learn more about filter design in your 3rd and 4th year.

E2.5 Signals & Linear Systems

Lecture 9 Slide 17